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Abstract

Atrial fibrillation (AF) is a cardiac disorder charac-
terised by rapid atrial contractions. Current treatments,
including ablation, vary in effectiveness. Recent mechanis-
tic modelling studies have highlighted the significance of
the right atrium (RA) in predicting AF outcomes, although
its role remains unclear. This study employs a novel open-
source biatrial modelling pipeline to assess AF inducibility
and monitor AF dynamics on clinical timescales.

Patient-specific models were created from late gadolin-
ium enhancement MRI (LGE-MRI) scans of 20 patients.
Manual RA and left atrial (LA) segmentation, fibrosis map-
ping in pre-processing, and calculation of atrial coordi-
nates to incorporate atrial structures and fibres were per-
formed. These personalised models were simulated and
post-processed to assess the AF wavefront patterns.

RA integration significantly increased rotor activity and
total phase singularities (PS) within the LA posterior walls
and reduced conduction velocity, indicating greater poten-
tial for AF sustainability. LA exhibited a higher mean PS
density (3.8 rotors/cm²) than RA (2.1 rotors/cm²), indicat-
ing regions prone to re-entry or wavefront break-up.

The modelling pipeline highlights the potential of bia-
trial models to efficiently predict AF outcomes, enabling
personalised therapies and comparisons of ablation ap-
proaches and anti-arrhythmic drug therapies.

1. Introduction

Atrial fibrillation (AF) is a prevalent cardiac arrhyth-
mia characterised by abnormal electrical impulses [1].
Current anti-arrhythmic drugs are sub-optimal, making
radio-frequency catheter ablation (RFCA) the gold stan-
dard [1]. RFCA poses challenges in predicting ablation
targets, leading to the adoption of LGE-MRI for 3D map-
ping and optimised therapy. These imaging advances en-
hance personalised therapy and streamline clinical work-
flows [2]. Prior research has primarily focused on LA

modelling to understand AF; however, the potential of bi-
atrial models in predicting AF inducibility remains under-
explored [3,4]. The RA presents challenges due to limited
pre-labelled datasets and geometric variability in manual
segmentation [2]. This study addresses these constraints
as cardiac modelling advances towards large-scale in silico
studies and personalised predictions, which holds potential
for patient-specific and population digital twins [3, 4].

We present a biatrial modelling pipeline using LGE-
MRI data from 20 patients. To address RA segmentation
challenges, we employed segmentation tools with an MRI
atlas. Patient-specific bilayer meshes incorporated atrial
fibres and structures from a fibre atlas using atrial coordi-
nates. We conducted finite element simulations and evalu-
ated PS density maps for AF inducibility assessment.

2. Materials and Methods

2.1. Patient Cohort

This study used LGE-MRI scans of the atria from 20 pa-
tients in the Atrial Segmentation Challenge Dataset (2018)
[5]. These scans had a spatial resolution of 0.625 x 0.625
x 0.625 mm³ with variable spatial dimensions (576 x 576
x 88 or 640 x 640 x 88 pixels). Ethical guidelines were
followed, and all patients provided informed consent [6].

2.2. Image Segmentation

Atrial anatomical models were created from LGE-MRI
data using 3D Slicer software (version 5.3.0). This pro-
cess involved importing DICOM data, manually tracing
LA and RA from individual 2D cross-sectional images,
and exporting the 3D models in NIfTI format for mesh
pre-processing. To ensure accurate labelling, pre-labelled
LA datasets and a reference MRI atlas were employed and
models were validated by a cardiac modelling expert. Seg-
mented meshes were saved in the VTK file format for all
cases. All the steps in the model construction process are
shown in Figure 1.
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Figure 1. Model development and AF simulation pro-
tocol. (A) LGE-MRI data acquisition and manual segmen-
tation, mesh pre-processing with (B) LGE intensity regis-
tration, and (C) region assignment using landmark selec-
tion. (D) Integration of atrial fibres from the Labarthe et
al.(2014) atlas with atrial coordinates, depicting endocar-
dial fibres as streamlines. (E) Finite element simulations
for AF induction and (F) subsequent post-processing. (LA
regions: LA body (dark blue), left superior pulmonary vein
(yellow), left atrial appendage (grey), right superior pul-
monary vein (dark orange), right inferior pulmonary vein
(red), left inferior pulmonary vein (orange). RA regions:
RA body (dark blue), superior vena cava (light grey), infe-
rior vena cava (orange), and coronary sinus (grey)).

2.3. Mesh Pre-processing

The subsequent steps form a mesh for electrophysiolog-
ical modelling. The LA and RA models were imported
into the CemrgApp software (v2.2.1) to project the max-
imum LGE intensities onto the meshes [7]. A predefined
image intensity ratio (IIR), which normalises pixel inten-
sity on the atrial wall by the mean blood pool intensity,
classified regions as normal (IIR <1.22) or scarred (IIR
>1.22) [3, 8]. The closed surface meshes were clipped at
the pulmonary veins (PVs), mitral valve (MV), coronary
sinus (CS), tricuspid valve (TV), and vena cava (VC) us-
ing Paraview software (v5.9.0) [3].

2.4. Landmark Selection

We employed a rule-based approach with a custom
MATLAB script to define both general and specific re-
gions while establishing boundary conditions [9]. In LA,
general landmarks included the right superior pulmonary
vein (RSPV), left superior pulmonary vein (LSPV), right
inferior pulmonary vein (RIPV), left inferior pulmonary
vein (LIPV), and left atrial appendage (LAA) apex. Spe-
cific landmarks were assigned at the highest lateral posi-
tions, LSPV-LA and RSPV–LA body intersections, and
the lateral-septal border parallel to LSPV and RSPV. In
RA, general landmarks included the right atrial appendage

(RAA) apex, coronary sinus, inferior vena cava (IVC), and
superior vena cava (SVC) [3]. Specific landmarks were
placed at the SVC-RA and IVC-RA body intersections,
corresponding to the highest lateral positions, and aligned
with the SVC and IVC at the lateral-septal confluence [9].

Subsequently, Laplace-Dirichlet solves in openCARP
cardiac electrophysiology simulation software were per-
formed to automatically identify atrial regions (PV, VC,
LAA, RAA, and CS), and universal atrial coordinates
(UAC) were calculated using previous methods [2].

2.5. Fibre Modelling

Patient-specific surface meshes were used to construct
the atrial coordinates. These coordinates integrated atrial
structures and fibres from the Labarthe et al.(2014) at-
las, including endocardial and epicardial fibres, pectinate
muscles (PM), cristae terminalis (CT), bachmann’s bundle
(BB) and the sino-atrial node (SAN) [2, 9]. The resulting
bilayer models included interatrial pathways [2].

2.6. Biophysical Modelling

Biophysical simulations used the human atrial ionic
model of Courtemanche et al.(1999) and a monodomain
solver within openCARP for excitation propagation [10].
The ionic model parameters were adjusted to represent per-
sistent AF remodelling and repolarisation variability [3].
AF was induced following Roney et al.(2020) method, ini-
tiating AF with initial parameters associated with four spi-
ral wave re-entries [3, 9]. Post-processing detected total
PSs, PS hotspots, and changes in rotor activity [3].

3. Results

3.1. Segmented Cohort

The atria, including PV, CS, VC, MV, LAA, and TV,
were manually segmented using 3D Slicer. Figure 2 dis-
plays LA and RA geometries of 20 individuals, highlight-
ing their morphological diversity. Challenges in segment-
ing the LAA and MV arose from unclear LA-LV bound-
aries and poor image contrast, leading to some labelling
disparities.

Figure 2. 3D representations of the segmented anatomy
of the LA and RA in the anteroposterior (AP) view. LA
regions: LSPV, RSPV, LAA, and LIPV. RA regions: SVC,
IVC, CS, and RAA.
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3.2. Fibrotic Remodelling

Fibrotic modelling, based on LGE intensities, revealed
significant diversity among the 20 anatomies, as shown in
Figure 3A. Models that required corrections in clipping
and segmentation were revised, and an example clipping
is shown in Figure 3B. The diverse atrial geometry posed
challenges in landmark selection, but expert validation en-
sured accuracy. The meshes were combined to create bi-
atrial models, which were validated visually and by fibre
mapping, with two excluded due to insufficient segmenta-
tion.

Figure 3. LGE intensities projected on the 3D LA and
RA meshes to incorporate fibrosis. (A) Fibrosis mapping
showing healthy (blue) and scarred tissue (red) in the AP,
posteroanterior (PA), and right atrial oblique (RAO) views.
The colour axis indicates the IIR values. (B) Clipped LA
and RA surfaces at PV, CS, VC, TV, and MV.

3.3. Fibre Modelling

Our approach, similar to Roney et al.(2022) methods,
maps atrial structures and fibres in both the LA and RA [3].
Figure 4 shows fibre configurations in the biatrial models,
highlighting their significance in personalisation. The ex-
clusion of complex atrial meshes streamlined fibre integra-
tion, facilitating biophysical modelling.

Figure 4. Atrial fibres from the Labarthe et al.(2014)
atlas were modelled using 2D UAC systems for (1) LA
and (2) RA. (B) Epicardial and (C) endocardial surfaces
are depicted in AP and axial views as streamlines [2].

3.4. Biophysical Models

Finite element simulations assessed the AF dynamics
over 15s in a biatrial model. Figure 5 shows slower con-
duction in the LA posterior walls (LAPW), indicating sig-
nificantly slower mean conduction velocity in the LA (31.7
cm/s) than in the RA (48.2 cm/s).

Figure 5. Transmembrane potential maps from AF
simulations using openCARP software depict AF in-
duction at 0ms, 100ms, 200ms, and 300ms. Arrows indi-
cate wavefront patterns in (A) AP and (B) PA views, with
the colour bar showing the transmembrane potential in mV.

Figure 6 shows PS density maps with increased rotor
activity and PS hotspots in the LAPW, suggesting re-entry
prone areas and a higher likelihood of sustained AF. The
LA exhibits a maximal phase singularity density of 3.8
rotors/cm2, while the RA has 2.1 rotors/cm2.

Figure 6. Post-processed PS density maps from AF sim-
ulations are shown in AP, PA, axial, and RAO views.
These maps show PS hotspot localisation in the LAPW.

4. Discussion

In this study, we developed biatrial models using LGE-
MRI data to predict AF inducibility in 20 patients. Rotors,
functional re-entry mechanisms in AF, are influenced by
ionic variations and scarring. Integrating RA significantly
affected AF dynamics, with PS density maps indicating in-
creased rotor activities in the LAPW, which are markers of
AF recurrence. These rotor locations aligned with regions
of scar tissue identified during mesh pre-processing.

Our biatrial models align with the findings of Calo et
al.(2006), highlighting the key role of RA re-entrant ar-
rhythmia in AF development and ablation treatment. This
study also identified conduction issues and chaotic im-
pulses in certain atrial walls [11]. Our work extends the
study of Nagel et al.(2021), which focused on biatrial sta-
tistical modelling and imaging metrics for assessing AF
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activity. Our study assesses AF dynamics using patient-
specific biatrial models and expands the literature on the
role of RA in AF recurrence, complementing Hopman et
al.(2023) work on RA fibrotic remodelling and ablation ap-
proaches [4,12]. This study assessed the specific effects of
RA and LA on AF recurrence, potentially informing per-
sonalised catheter ablation strategies.

The biatrial modelling framework has limitations, par-
ticularly in manual segmentation which introduces intra-
operator variability. Although developing an autonomous
biatrial modelling pipeline is not the focus of this study, it
could minimise errors and enhance region assignment re-
peatability [13]. Although model personalisation is impor-
tant in identifying AF trends, our biatrial models do not ac-
count for specific patient attributes such as co-morbidities,
limiting their applicability in diverse populations [3].

This study aimed to predict AF inducibility using bia-
trial models. It also offers the potential for assessing ab-
lation strategies to treat AF recurrence. Future work will
extend this work to the UK Biobank longitudinal dataset,
enabling long-term post-AF treatment outcome prediction.
Our objectives will address the challenges of inferring
missing atrial longitudinal data, constructing models from
low-resolution imaging data, and integrating ECG data us-
ing biophysical models and machine learning. These re-
search directions advance our understanding of AF mech-
anisms and aim to streamline clinical workflows.

5. Conclusion

Our study introduces a biatrial model cohort to assess
AF patterns and highlights the role of the RA in predict-
ing AF inducibility. These findings highlight the potential
of biatrial substrates in the development of personalised
patient-specific and population digital twins.
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[12] Nagel C, Schuler S, Dössel O, Loewe A. A Bi-Atrial Statis-
tical Shape Model for Large-Scale In Silico Studies of Hu-
man Atria: Model Development and Application to ECG
Simulations. Medical Image Analysis 2021;74:102210.

[13] Aguado AM, Olivares AL, Yagüe C, Silva E, Nuñez-Garcı́a
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